一般来说,因变量只有一个,自变量会有一个或多个。下面就按因变量的数量及类别为分:一元线性回归、多元线性回归。
34.05 9.14 28.11选定A14:C18,在地址栏中输入=LINEST(C2:C10,A2:B10,TRUE,TRUE),按CTRL+SHIFT+ENTER,返回一个表格,表格中的每个单元格的公式显示为:{=LINEST(C2:C10,A2:B10,TRUE,TRUE)},如下表:
7 770介绍统计学中的一元和多元线性回归,并通过EXCEL自带的统计函数LINEST、INDEX进行手工计算,再通过EXCEL数据分析工具包进行自动计算。
x的系数a可以在任意单元格式输入=INDEX(LINEST(B2:B10,A2:A10,TRUE,TRUE),1,1),截距b可以在任意单元格式输入=INDEX(LINEST(B2:B10,A2:A10,TRUE,TRUE),1,2),index函数第一个参数是指定一个数组,第二和第三个参数是指定返回的行列位置。
const 可选。一个逻辑值,用于指定是否将常量 b 强制设为 0。如果 const 为 TRUE 或被省略,b 将按通常方式计算。如果 const 为 FALSE,b 将被设为 0,并同时调整 m 值使 y = mx。
0.9732 38.84 #N/A一元线性回归是指一个因变量y只与一个自变量x有相关关系,通过公式可以表示为如下图:
25.89为截距(常量)b的标准误差值,
22 5 540此表格和一元线性回归的表格一样,只是多了一列,因为多了一个自变量。多出一列的内容是另一个自变量的系数和它的标准误差值。同样可以通过用INDEX函数取得数据的每一个值。根据上表可以得到拟合的线性回归函数y=69.17×1+6.88×2+87.37
0.97为相关系数,
37.62为y估计值的标准误差,
5.9 667Known_x’s 可选。关系表达式 y = mx + b 中已知的 x 值集合。known_x’s 对应的单元格区域可以包含一组或多组变量。如果仅使用一个变量,那么只要 known_y’s 和 known_x’s 具有相同的维数,则它们可以是任何形状的区域。如果使用多个变量,则 known_y’s 必须为向量(即必须为一行或一列)。如果省略 known_x’s,则假设该数组为 {1,2,3,…}, 其大小与 known_y’s 相同。
线性回归是自变量与因变量之间是线性关系的回归。
4 1.1 200所以上述的一元线性回归的拟合直线函数为y=94.34x+93.92,相关系数为0.97。
328061.71为回归平方和,
a为每个自变量对因变量y的影响因素,我们以二元线性回归为例,用EXCEL函数LINEST进行分析。数据如下,填充在EXCEL的A1:C10中。
sey Y 估计值的标准误差。使用LINEST线性回归函数进行手工计算。
seb 常量 b 的标准误差值(当 const 为 FALSE 时,seb = #N/A)。stats 可选。一个逻辑值,用于指定是否返回附加回归统计值。如果 stats 为 TRUE,则 LINEST 函数返回附加回归统计值,这时返回的数组为 {mn,mn-1,…,m1,b;sen,sen-1,…,se1,seb;r2,sey;F,df;ssreg,ssresid}。如果 stats 为 FALSE 或被省略,LINEST 函数只返回系数 m 和常量 b。
下面的图示显示了附加回归统计值返回的顺序。
93.92为截距b,
下载LINEST回归分析EXCEL例子文件点击下载线性回归.xls
9907.85为残差平方和。
1 210231.78为F统计值
4 400